

Journal of Photochemistry and Photobiology A: Chemistry 136 (2000) 157-161

www.elsevier.nl/locate/jphotochem

Photob

Journal of Photochemistry

Sensitization of TiO₂ particles by dyes to achieve H₂ evolution by visible light

Kazuhiro Hirano, Eiji Suzuki, Akio Ishikawa, Takashi Moroi, Hidenobu Shiroishi, Masao Kaneko*

Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512 Japan Received 29 March 2000; received in revised form 21 June 2000; accepted 18 July 2000

Abstract

Sensitization of titanium dioxide particles platinized and suspended in water was carried out by $\text{Ru}(\text{bpy})_3^{2+}$, tris(bipirimidine)Ru(II) ($\text{Ru}(\text{bpym})_3$) and porphines to induce dihydrogen evolution by visible light in the presence of sacrificial electron donor, EDTA. It was found that $\text{Ru}(\text{bpym})_3^{2+}$ is an efficient sensitizer for H₂ formation. High concentration of the $\text{Ru}(\text{bpy})_3^{2+}$ was required to achieve the photosensitization suggesting adsorption of the sensitizer on the TiO₂. Photochemical deposition of platinum from K₂[PtCl₄] was important to prepare active Pt-loaded TiO₂ photocatalyst. Simple mixing of the TiO₂ and Pt powders in a mortar as usually done for preparing conventional photocatalyst was not effective for the present system showing that electronic channeling between the TiO₂ bulk and the Pt is more important than for usual photocatalysts. The H₂ evolution showed an optimum point at pH 7, which was interpreted by the adsorption of the dye on TiO₂. For the tetrakis(4-carboxyphenyl)porphine and tetrakis(4-sulfonicphenyl)porphine sensitizers, only the absorption of light at Q band was effective. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Sensitization; TiO₂; Ru(bpy)₃²⁺; EDTA; Photoreaction

1. Introduction

Photocatalysis by titanium dioxide (TiO₂) has been investigated intensively since the first report by Fujishima and Honda [1] on UV light induced water cleavage using TiO₂ photoanode. Many works on TiO₂ photocatalysis concern its particle suspension system. Although UV light cleavage of water by suspended TiO₂ particles was claimed by some groups [2,3], the reproducibility of the system to evolve quantitative H₂ and O₂ is still a problem. The TiO₂ particles photocatalyst is applied for removal of environmentally hazardous substances by Fujishima and coworkers [4] achieving commercialization. Sensitization of the TiO₂ particles for utilizing visible light has been an important subject both in photochemical energy conversion and decomposition of hazardous substances. Adsorption of tris(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) (Ru(dcbpy)₃) sensitizer on platinized TiO₂ particles (Pt/TiO_2) led to H₂ evolution by visible light with sacrificial donor [5], but the $Ru(bpy)_3^{2+}$ complex with no substituent on the bpy ring was not effective. Later, $Ru(bpy)_3^{2+}$ has been reported to be effective for H_2 evolution in the presence of a donor molecule [6,7]. Sensitization of Pt/TiO₂ has been achieved also by coating the semiconductor particles with polymer-pendant Ru(bpy)₃²⁺ complex to evolve H₂ by visible light in the presence of sacrificial donor (EDTA) [8]. Deposition of zinc porphyrin on Pt/TiO₂ was also used for H₂ formation in the presence of donor [9]. In these sensitization reactions, it was important that the sensitizing dye molecule is adsorbed on the TiO₂ particles.

Sensitization of TiO₂ has also been achieved for its photoanode. Polycrystalline TiO₂ photoanode (anatase) was successfully sensitized by $Ru(dcbpy)_3^{2+}$ to give sensitized high photocurrent [10,11], but $Ru(bpy)_3^{2+}$ was not effective [10]. Single crystalline and polycrystalline TiO₂ were sensitized by modifying with Nafion coating incorporating $Ru(bpy)_3^{2+}$ [12]. Sensitization of a nanoparticle film of TiO₂ by adsorbing polypyridine Ru complex reported by O'Regan and Grätzel [13], which led to a solar cell with nearly 10% light-to-electricity conversion efficiency, evoked great interest in the sensitization of large band-gap semiconductors [13]. Also in the sensitization of TiO₂ photoanode, adsorption of a dye to the semiconductor is an important condition to achieve the sensitization. Although some achievements have been reported about sensitization

^{*} Corresponding author. Tel.: +81-29-2516967; fax: +81-29-2288374. *E-mail address:* kanekom@mito.ipc.ibaraki.ac.jp (M. Kaneko).

of large band-gap semiconductors, the details are still open for investigation. Moreover, this is an important subject for future solar energy conversion, and hence warrants further investigation.

The present authors have carried out sensitization of Pt-loaded TiO₂ powder suspension simply by dissolving in an aqueous phase high concentration of a conventional $Ru(bpy)_3^{2+}$, $Ru(bpym)_3$, or water-soluble porphyrines to achieve visible light H₂ evolution in the presence of a sacrificial electron donor, and found that some water-soluble sensitizers are more efficient for H₂ production than the known $Ru(bpy)_3$ derivatives; the sensitization behavior is reported here.

2. Experimental

2.1. Materials

TiO₂ particles used are P-25 donated by the Nippon Aerosil, and TiO-5 standard sample from the Catalysis Society of Japan. $\text{Ru}(\text{bpy})_3^{2+}$ was prepared and purified according to the procedure reported elsewhere [14]. Tetrakis-(4-carboxyphenyl)porphine (TPPC) was purchased from Porphyrin Products, tetrakis(4-sulfonicphenyl)porphine (TPPS) acid from Tokyo Kasei Kogyo, and tetrakis(4-pyridylphenyl)porphine (TPPPy) from Aldrich. H₂PtCl₆, ethylenediaminetetraacetic acid disodium salt (EDTA), PtO₂, RuO₂, Pt-black and other chemicals are of commercially available purest grade.

Pt-loaded TiO₂ particles were prepared by photodeposition of Pt from a H₂PtCl₆ aqueous solution in the presence of methanol as electron donor. TiO₂ particles (1 g) were suspended in 200 ml water containing H₂PtCl₆ (8 mg) and 2 vol.% methanol followed by irradiation with a 100 W high pressure mercury lamp (Sen Light, HLR100T-1) under air for 8 h to obtain TiO₂ with 0.3 wt.% loaded Pt (abbreviated to P-25/Pt and TiO-5/Pt). The Pt-loaded TiO₂ was washed with a large excess of water. Pt-loaded TiO₂ was also prepared by simply mixing TiO₂ and Pt-black (or RuO₂) in a mortar.

2.2. Photoreaction

Photocatalytic reaction was carried out in water containing Pt-loaded TiO₂ suspension, dissolved sensitizer and EDTA under argon with magnetic stirring. TiO₂/Pt for which Pt was deposited photochemically was suspended in water and treated under ultrasonication before use. A 500 W xenon lamp was used as a light source with UV cutoff filter (L-42, Toshiba Glass). Two sets of the filter were used to assure cutoff of the UV light. After the reaction, the gaseous products were analyzed by a gas chromatograph (Shimadzu, GCPT-4P) with a molecular sieve 5A column and argon carrier gas.

Table 1 Results of hydrogen production from water by visible light using platinized TiO₂ suspension system^a

$Ru(bpy)_3^{2+}$ concentration (mM)	TiO ₂ (P-25)/Pt (g) ^b	Filter	H_2 evolu- tion (µl)
0.1	0.05	L-42	687.7
-	0.05	L-42	32.8
0.1	-	L-42	2.7
-	0.05	-	2696.4
0.1	_c	L-42	0.0

^a Light source: 500 W Xe lamp (2 h); pure water: 3 ml; electron donor: EDTA 0.01 M.

^b Platinum was loaded at 0.3 wt.% per TiO₂.

 c Platinum black 0.77 μmol (the amount of the Pt equals that of Pt on TiO_2) TiO_2/Pt: platinum was loaded on the TiO_2 powder using the photochemical deposition method.

3. Results and discussion

Typical data of the photocatalytic reaction using TiO₂ with photodeposited Pt are summarized in Table 1. The H₂ produced in the presence of $\text{Ru}(\text{bpy})_3^{2+}$ far exceeds the H₂ without the sensitizer showing that the Ru complex works as a sensitizer. In the reference experiments, H₂ was not formed in the absence of TiO₂ or in the presence of only Pt without TiO₂. Irradiation of the whole system (Pt-loaded TiO₂/Ru(bpy)₃²⁺/EDTA) without cutoff filter produced a lot of H₂ because of direct excitation of the TiO₂.

Action spectrum for the H_2 production was measured and shown in Fig. 1. The photoconversion efficiency was estimated from the amount of evolved H_2 . Although it was difficult to distinguish H_2 formation between sensitized process and direct TiO₂ excited one at the wavelength region near 400 nm, it is evident by the H_2 formation in the region

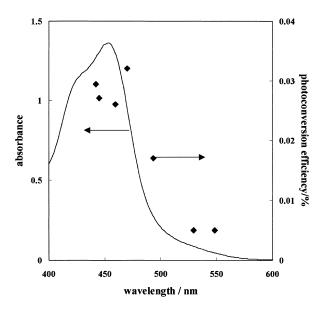


Fig. 1. Absorption spectrum of Ru(bpy)_3^{2+} solution and photoaction spectrum of EDTA/Ru(bpy) $_3^{2+}$ /TiO₂/Pt system for H₂ evolution. EDTA (0.1 M), Ru(bpy) $_3^{2+}$ (0.1 mM), TiO₂ (TiO-5)/Pt (0.3 wt.%) (0.05 g), Xe lamp (500 W).

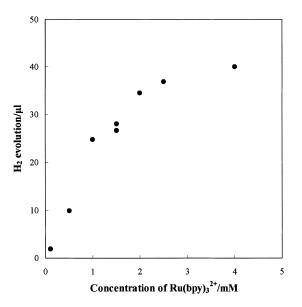


Fig. 2. The relationship between the amount of evolved H₂ against $Ru(by)_3^{2+}$ concentration. EDTA (0.1 M), TiO₂ (TiO-5)/Pt (0.3 wt.%) (0.05 g), Xe lamp (500 W), cutoff filter Y-44 (two sets).

from 400 to 500 nm that the complex having its absorption maximum at 450 nm induces the photochemical event.

An interesting aspect of the present sensitized reaction is the concentration conditions of the sensitizer required to achieve the photocatalysis. Sensitizer concentrations usually used in a solution photoreaction in a micromolar to sub-millimolar orders are not sufficient for the present sensitization. The dependence of H₂ evolution on the complex concentration is shown in Fig. 2. Only under high concentrations, the H₂ formation took place efficiently with visible light. In these conditions, most of the incident photons are absorbed by the sensitizer. There could be two reasons why such high concentration of the sensitizer is needed for H₂ evolution. One is the competition between H_2 evolution (second-order reaction) and the recombination of the separated charges (first-order reaction). The other is the difference of the photoinjection efficiency between the adsorbed dye and the free dye in the solution. Grätzel et al. reported an efficient solar cell composed of TiO2 nanoparticle films and adsorbed sensitizer molecule. Adsorption equilibrium constant of Ru(bpy)_3^{2+} on the TiO₂ would be very small because the color of TiO₂ particles did not change when the particle was immersed in $1 \text{ mmol dm}^{-3} \text{ Ru}(\text{bpy})_3^{2+}$ aqueous solution for a day, so that high concentration condition would be needed to increase the adsorption of the dye molecule. The result of Fig. 2 is most probably interpreted by sensitization with adsorbed sensitizer molecules.

The effect of pH on the H_2 evolution is shown in Fig. 3. The H_2 evolution showed an optimum point at pH 7. The surface of TiO₂ has amphoteric character due to hydroxyl groups [16].

$$\text{Ti-OH}_2^+ \rightleftharpoons \text{Ti-OH} + \text{H}^+, \quad \text{p}K_1 = 5.76$$

Fig. 3. Relationship of the amount of H_2 produced and pH. The pH of the solutions was adjusted with either NaOH or HCl. EDTA (0.1 M), $Ru(bpy)_3^{2+}$ (1 mM), TiO_2 (TiO-5)/Pt (0.3 wt.%) (0.05 g), Xe lamp (500 W), cutoff filter Y-44 (two sets).

 $Ti-OH \rightleftharpoons Ti-O^- + H^+, \quad pK_2 = 8.38$

The increase of H_2 evolved with the pH might reflect the dissociation of the surface OH groups on the TiO₂, which can facilitate the adsorption of the cationic dye on the TiO₂ surface [5,17]. However, in high pH regions electron injection from the excited sensitizer would be difficult because the conduction band of TiO₂ shifts to higher level with the increase of the pH. In addition, donating ability of EDTA would be lower because of protonation at low pH [8]. These factors would bring about the pH dependence of Fig. 3.

The effect of the loaded amount of Pt on TiO_2 at pH 4.5 is shown in Fig. 4. The decrease after the optimum point is interpreted by the over-coverage of the surface by the Pt resulting in the decrease of the effective TiO_2 surface to be utilized by the sensitizer.

The effect of the deposition method is compared between photochemical deposition and simple mixing deposition (Table 2). Photochemical deposition of platinum from

Table 2

Results of hydrogen production from water by visible light using TiO_2 suspension system^a

Sensitizer concentration (mM)	TiO ₂ (TiO-5)/ catalyst (g) ^b	H_2 evolution $(\mu l h^{-1})$
$Ru(bpy)_3^{2+}$ (1.00)	TiO ₂ /Pt (0.05) ^c	23.3
Ru(bpy)_{3}^{2+} (1.00)	TiO ₂ /Pt (0.05) ^d	4.7
$\operatorname{Ru}(\operatorname{bpy})_{3}^{2+}$ (1.00)	TiO ₂ /RuO ₂ (0.05) ^d	0.6

 $^{\rm a}$ Light source: 500 W Xe lamp (1 h); pure water: 3 ml; electron donor: EDTA 0.1 M.

^b Catalyst was loaded at 0.3 wt.% per TiO₂.

^c Photodeposition of Pt on TiO₂.

^d Mixing of Pt or RuO₂ and TiO₂.

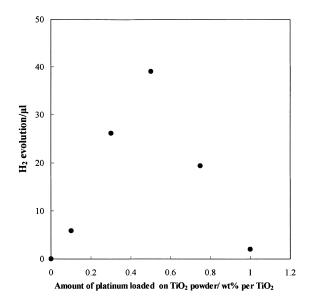


Fig. 4. Relationship between H₂ evolution and amount of Pt. EDTA (0.1 M), Ru(bpy)₃²⁺ (1 mM), TiO₂ (TiO-5) (0.05 g), Xe lamp (500 W), cutoff filter Y-44 (two sets), pH 4.5.

 K_2 [PtCl₄] was important to prepare active Pt-loaded TiO₂ photocatalyst. Simple mixing of the TiO₂ and Pt powders in a mortar as usually done for preparing conventional photocatalyst was not effective for the present system. The Pt would be deposited on the TiO₂ surface by the photodeposition method where electron channeling exists, while Pt is loaded on the TiO₂ surface randomly by the mixing method. Due to this reason, the Pt particles by photodeposition method would be able to efficiently evolve H₂.

The effect of other sensitizers is shown in Table 3. Tris(bipyrimidine)ruthenium(II) showed much higher efficiency than Ru(bpy)_3^{2+} . This result could be explained by the higher affinity of Ru(bpym)_3^{2+} on the TiO₂ surface than the Ru(bpy)_3^{2+} . In addition to the Ru complexes, porphine derivatives were effective as sensitizer. The degree of adsorption on the TiO₂ could be one of the reasons why TPPS has lower activity than TPPC [15]. Different electron density in excited states or redox potential might be another

Table 3

Typical data of H_2 production in photochemical H^+ reduction by using various sensitizers^a

Sensitizer concentration (mM)	TiO_2 (TiO-5)/ catalyst (g) ^b	H_2 evolution $(\mu l h^{-1})$		
$Ru(bpy)_3^{2+}$ (1.00)	TiO ₂ /Pt (0.05)	23.3		
$Ru(bpym)_3^{2+}$ (1.00)	TiO ₂ /Pt (0.05)	80.1		
$Ru(dcbpy)_3^{4-}$ (0.25)	TiO ₂ /Pt (0.05)	17.8		
TPPC (0.25)	TiO ₂ /Pt (0.05)	149.9		
TPPS (0.25)	TiO ₂ /Pt (0.05)	54.5		
TPPPy (0.25)	TiO ₂ /Pt (0.05)	2.1		

 a 500 W Xe lamp (1 h); pure water: 3 ml; electron donor: EDTA 0.1 M. b TiO₂/catalyst: platinum was loaded on the TiO₂ powder using the photochemical deposition method.

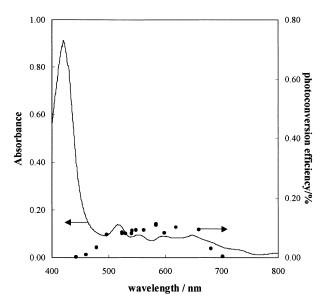


Fig. 5. Absorption spectrum of TiO₂-TPPC and photoaction spectrum of EDTA/TPPC/TiO₂/Pt system for H₂ evolution. EDTA (0.1 M), TPPC (0.25 mM) TiO₂ (TiO-5)/Pt (0.3 wt.%) (0.05 g), Xe lamp (500 W).

reason. The action spectrum for the H_2 evolution by the TPPC/TiO₂/Pt system was measured and compared with the absorption spectrum of TPPC/TiO₂ in Fig. 5. Although the plots for this action spectrum are scattered, it is evident that the hydrogen evolution is induced with light absorption by the Q band and not by the Soret band.

Table 4 shows the results by using other donor compounds instead of EDTA. Among the donors tested only EDTA and triethanolamine (TEOA) were effective to produce H₂. The dependence of H₂ evolved in a TEOA solution on pH was different from that in an EDTA solution. This would be because the oxidation of TEOA in an acidic solution is slower than that in an alkaline solution [8]. Reversible donors such as Fe²⁺, hydroquinone (HQ), ascorbic acid, and phenol were

Table 4

Results of hydrogen production from water by visible light using TiO_2 suspension system^a

Donor concentration (mM)	Sensitizer concentration (mM)	H ₂ evolution (µl)	рН
TEOA (1.00)	$Ru(bpy)_3^{2+}$ (1.00)	13.2	~ 11
TEOA (1.00)	$Ru(bpy)_3^{2+}$ (1.00)	6.9	7.3
TEOA (1.00)	$Ru(bpy)_3^{2+}$ (1.00)	0.2	6.0
Ascorbic acid (0.10)	$Ru(bpy)_3^{2+}$ (0.10)	0.4	b
Phenol (0.10)	$Ru(bpy)_3^{2+}$ (0.10)	0.0	b
Acetone	$Ru(bpy)_3^{2+}$ (0.10)	0.3	b
Methanol	$Ru(bpy)_3^{2+}$ (0.10)	0.0	b
FeCl ₂ (1.00)	$Ru(bpy)_3^{2+}$ (1.00)	0.0	b
HQ (1.00)	$Ru(bpy)_3^{2+}$ (1.00)	0.0	b

 a Light source: 500 W Xe lamp (1 h); pure water: 3 ml; catalyst: TiO_2/Pt (0.05 g/0.3 wt.%).

^b pH is not adjusted.

not effective. In a conventional H_2 formation system by UV irradiation using platinized TiO₂ suspension and sacrificial donor in water, methanol is effective as a donor leading to efficient H_2 production in which the methanol scavenges the holes formed in the TiO₂ by direct excitation. In the present system, methanol does not work at all as a donor supporting that the present system is a sensitized one which does not produce holes in the TiO₂ bulk.

Acknowledgements

The authors are thankful for the Grant-in-Aid (No. 475/10650862) from the Ministry of Education, Science, Sports and Culture.

References

- [1] A. Fujishima, K. Honda, Nature 37 (1972) 238.
- [2] S. Tabata, H. Nishida, Y. Masaki, K. Tabata, Catal. Lett. 34 (1995) 245.

- [3] K. Sayama, H. Arakawa, J. Chem. Soc., Faraday Trans. 93 (1997) 1647.
- [4] H. Matsubara, M. Takada, S. Koyama, K. Hashimoto, A. Fujishima, Chem. Lett. (1995) 767.
- [5] D.N. Furlong, D. Wells, W.H.F. Sasse, J. Phys. Chem. 90 (1986) 1107.
- [6] R.M. Quint, N. Getoff, J. Hydrogen. Energy 13 (5) (1988) 269.
- [7] J. Sabate, S. Cervera-March, R. Simarro, J. Gimenez, Int. J. Hydrogen Energy 15 (2) (1990) 115.
- [8] T. Nakahira, Y. Inoue, K. Iwasaki, H. Tanigawa, Y. Kouda, S. Iwabuchi, K. Kojima, Makromol. Chem., Rapid Commun. 9 (1988) 13.
- [9] E.A. Malinka, G.L. Kamalov, S.V. Vodzinskii, V.I. Melnik, Z.I. Zhilina, J. Photochem. Photobiol. A 90 (1995) 153.
- [10] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, J. Am. Chem. Soc. 107 (1985) 2988.
- [11] N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel, J. Am. Chem. Soc. 110 (1988) 1216.
- [12] L. Kavan, M. Grätzel, Electrochim. Acta 34 (1989) 1327.
- [13] B. O'Regan, M. Grätzel, Nature 353 (1991) 737.
- [14] M. Kaneko, A. Yamada, Photochem. Photobiol. 33 (1981) 253.
- [15] K. Kalyanasundaram, N. Vlachopoulos, V. Krishnan, A. Monnier, M. Grätzel, J. Phys. Chem. 91 (1987) 2347.
- [16] B. Ohtani, Y. Okugawa, S. Nishimoto, T. Kagiya, J. Phys. Chem. 91 (1987) 3550.
- [17] D.N. Furlong, W.H.F. Sasse, Colloids Surf. 7 (1983) 29.